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ABSTRACT 

This report examines two possible receiver strategies 
for use with photoelectron emitting optical detectors. 
The Poisson statistics of these photoelectron emissions 
are used to find simple easily evaluated but tight upper 
bounds on error probability with both receiver decision 

rules. Upper bounds on error probability are derived 
for both M-ary PPM communication with a maximum 
likelihood receiver and for a fixed threshold radar de- 
tection receiver. 

These receiver performance bounds illustrate several 
differences between optical or quantum communication 
and conventional communication. These differences 

are discussed in detail. 

Accepted for the Air Force 
Joseph R. Waterman,   Lt. Col.,   USAF 
Chief,   Lincoln Laboratory Project Office 
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ERROR   PERFORMANCE  BOUNDS 

FOR  TWO RECEIVERS 

FOR  OPTICAL  COMMUNICATION  AND  DETECTION 

I. INTRODUCTION 

A number of authors        have considered optical communication and detection receiver 

strategies.    The error probabilities for these receivers have been expressed either in terms of 
infinite summations which have no closed form solution or in terms of sums involving Bessel 

functions,  etc.,  which are not readily calculated.    Some authors have presented graphs of error 

probability for selected values of system parameters.    The calculate and plot approach does not 

readily lead to much insight in the tradeoffs between various design parameters and certainly 

does not provide a quick way of evaluating the effects of changing design parameters. 
This report presents some relatively simple but rather tight analytic upper bounds on error 

probability for both optical communication and detection. These bounds are then used to demon- 
strate some of the basic characteristics of optical detection and communication. 

Before presenting these bounds, we review the basic properties of optical receivers.    Next, 
we consider the error bound for optical communication;  then the bounds for optical detection. 

Finally,   we discuss these bounds and their implications. 

II. DIRECT-DETECTION  OPTICAL  RECEIVERS 

In optical receivers,  the basic physical process in the detector is the emission of photo- 
electrons from a photosensitive surface.    Since the optical detector produces these emissions, 
the most reasonable way to define the receiver is in terms of these emissions.    Photoelectron 
emissions are discrete independent random events subject to the laws of quantum physics.    These 
emissions are usually modeled as occurring with Poisson statistics of mean event rate,  or av- 
erage occurrence rate,  A.    The parameter  X   is a function of the entire optical system and is 
calculated as 

rjW. 

where 

W. = Power incident on the detector 
l 

7} = Detector quantum efficiency 

hv = Energy in a quantum of light of frequency v. 

With Poisson statistics,  an average of AT events (emissions) occur in time interval T;   further- 
more,  the probability of exactly n   events in time interval  T,  given the mean event rate  A,   is 

P(n/A)=   (-^e"AT       . (2) 

Another basic property of the Poisson process is that the number of events occurring in disjoint 

time intervals are statistically independent. For such photoemissive or "direct" detectors, all 
signaling must be accomplished by changing the W. incident on the detector. Finally, all photo- 

detectors have some inherent dark current which must be included in calculating the A  due to 



nonsignal or background radiation. For the rest of this report, we shall assume that the mean 

event rate due to all background or nonsignal power is B, and that the addition of signal power 

increases this event rate to S + B. 

III.    COMPARISON   RECEIVER   FOR  COMMUNICATION 

A commonly envisioned optical modulation system used for photoemissive detectors is pulse- 

position modulation or digital PPM.    If one of M  symbols,   m. through m,.,   is to be communi- 

cated,  the PPM system signals by transmitting signal energy in the one of M  possible time slots 

assigned to the desired symbol and no signal in the M-l time slots corresponding to the other 

M-l symbols.    The transmitter is assumed to operate at full intensity during the entire trans- 

mitting interval.    Each time slot is assumed to be T  seconds wide.    It is also assumed that no 

signal energy is present in any of the M-l time intervals corresponding to the other M-l symbols. 

If any cross talk is present,  the cross talk must be considered as increasing the background rate 

B observed during those nonsignal intervals. 

The PPM system is most easily analyzed for the simple case M = 2.    A signal is transmitted 

in time slot 1 to communicate m.  and in time slot 2 to communicate m~.    For constant intensity 

signals,  all the signal dependent information at the receiver is contained in the number of photo- 

electron emissions,  n. and n?,  counted during receiver time slots 1 and 2,  respectively.    If m. 

and m? occur with equal probability, the maximum likelihood receiver is optimum,  and the deci- 

sion rule is to select the m which maximizes the conditional probability of n. and n? given m. 

This decision rule may be symbolically written as 

ml 
P(ni,n2/mi)   £     P(ni,n2/m2)      . (3) 

m2 

Using Eq. (2) and the independence of n. and n?,  we may evaluate the decision rule as 

n. n7 m n.       „ n /O.TD> 
[(S + B)T]      e-(S+B)r  [BT]       e-Br   >     [BT]      e-±JT  [(S + B)T]      e'

(b+ht)T 

V n2l m2 
nr nZ[ 

Some algebra simplifies the decision rule to 

m-i 
,S + B,nl    >    . S + B.n2 
1     B     ' l     B     ' 

m2 

Since (S + B)/B is greater than 1,  the sense of the inequalities is preserved by taking logarithms 

on both sides,  hence the M = 2,   PPM decision rule is 

ml 
nl     <    n2       • 

m2 

If m.  is transmitted,  a communication error can occur only if n. < n? and vice versa.    By sym- 

metry, the error probability is the same whether m. or m- was transmitted.    Thus 

P(E) =  P[n1 < n2/mi]      . (4) 



2 3 Explicit evaluation of P(E) involves a sum of terms involving Bessel functions. '     A simple but 

rather tight upper bound on P(E) may be obtained by using the Chernoff bound.     In Appendix A, 

we find a bound on P(E) which shows that 

-STE   (S/B) 
P(E)^e L (5) 

for binary PPM where 

c is \   L   ? B //TT~s   „\1    \ Ni + (S/B) -1 E
C

(
B> = I1 - 2 s W1 + B - Vj = [ 57B  

I21 
(6) 

The error exponent E„(S/B) is only a function of the ratio S/B and not a function of T. 

For full M-ary PPM,  the receiver decision rule is to select the symbol corresponding to 

the receiver time interval with the largest number of counted photoelectron emissions.    By sym- 

metry the error probability is the same for each possible transmitted symbol.    Thus 

P(E) = P(E/m. transmitted) 

= P [n1 <<; max (n2. . . nM)/m1]      . (7) 

The union bound allows us to upper bound the right side of Eq. (7) as 

M 

P(E)<   £    Pln^n./m^      . (8) 

J = 2 

Since n? through n.. are statistically independent,   identically distributed random variables given 

that m,  is transmitted 

P [n1 ^ n2/m1] = P [n1 < n./ir^] 

for all j  between 2 and M.    Thus, 

P(E)<? (M-l) P[n1<n2/m1]      . (9) 

But Eqs. (5) and (6) upper bound P [n, ^ n?/m, ],   thus 

-STE„(S/B) 
P(E)< (M - 1) e ^ (10) 

for M-ary PPM. 

IV.   THRESHOLD  RECEIVER  FOR  DETECTION  AND  COMMUNICATION 

In the detection problem the receiver must decide whether there is signal present,  not which 

signal is present.    For the case in point, the detection receiver must decide whether there is 

signal power present along with background power by observing for a time interval  T.    Thus the 

receiver determines whether A = S + BorX = Bby looking at the process for time  T.    Let hypoth- 

esis H    be that background alone is present (A = B) and H. be the hypothesis that both signal and 

background are present (A = S + B). 

The exact method of formulating the detection receiver decision rule differs slightly,  depend- 
Q 

ing upon whether one uses Bayes rule   to minimize the risk given a set of costs or whether one 

uses a Neyman-Pearson test    to obtain the best performance consistent with a specified probabil- 

ity of saying H.  given that H    is true.    Let us assume that the receiver has observed n  counts. 



g 
Both the Bayes and Neyman-Pearson tests are likelihood ratio tests    in which the likelihood ratio 

P(n/HQ) 

is compared with a threshold  r and the receiver guesses that H, is true if the likelihood ratio 

exceeds   r and that H   is true otherwise.    This detection rule is written as o 

(n/Ht) 

P(n/HQ, 
o 

Thus the decision rule is 

Hl 

H1 
P(n/X = S + B)   > 

P(n/A = B) i.   r 
n 

0 

Using Eq. (2) for P(n/A),  we find that the test becomes 

[(S + B)r]ne-(S+B)T  H. 
 FT     >  -£    I   r    . (12) 

(BT)       -BT H —T-!— e o n'. 

Taking natural logarithms of both sides of the inequality and performing some algebra we find 

that the decision rule is 

Hl 
n   £    T (13) 

H o 

where 

T _      ST + In r 
ln(l + S/B)      • l1^' 

The quantity T is often called the detector threshold. 

There are two basic errors which may occur. The receiver may estimate H. when H is 

true or H when H. is true. Conventionally these two events are called a "false alarm" and a 

"miss" respectively and occur with probabilities Pp and PM respectively. 

A good but simple bound on P_ and P.. provides a way of estimating the implications of var- 

ious values of S,   B  and r  without performing tedious calculations.    As above,  the Chernoff 

bound provides such a bound.    In Appendix B,  it is shown that 

PM<e a (15) 

o  iA , B , r a-ln a-i , 
t -ST[l+g][ •] 

PF< Y e <16» 

where 

(S + B) T       (S + B)Tln(1+l» 
01 T ST + ln(D " l    ' 



For the general detection problem with arbitrary  r,  no additional simplifications are possible 

for the bound in Eqs. (15) to (17).    An important special case occurs for r = 1 which is used for 

binary communications decisions with equally likely hypotheses.    For this special case, 

a = (1 + f) ln(l + |) (18) 

and 

M Pp = P(E) < e 
•STET(S/B) 

(19) 

where 

^T* B 

(1 + |) ln(l + |) -ln[(l + j) ln(l + |)]- 1 

ln[l + |] 
(20) 

Figure 1 shows plots of E„(S/B) and ET(S/B).    The subscripts  C and T were chosen to in- 

dicate the comparison and threshold receivers,   respectively.    An intuitive explanation of the 

-30 -20 
J I L J I I- J I l_ 

10 20 SO 40 

Fig. 1.    Ep(S/B) and ET(S/B) as a function of the ratio S/B. 



better performance of the comparison receiver is that the comparison receiver adjusts its 

"threshold" to just barely exceed the actual background level at each interval,  whereas, the 

threshold or detection receiver must set a fixed threshold high enough to exceed almost all the 

possible background count numbers.    In some sense, we may argue that the comparison receiver 

has the simpler job of deciding which of two bins contains signal while the detection threshold 

receiver must also consider whether there is any signal present at all. 

V.     DISCUSSION 

The asymptotic behavior of the error probability expressions above illustrates two basic 

differences between optical communication and conventional communication techniques.    First 

let us consider very high signal-to-background ratios.    In particular,  let us approach the limit 

of zero background.    To evaluate the error probability expressions in Eqs. (5),   (10) and (19),   we 

need to know the behavior of E„(S/B) and E~,(S/B) as S/B goes to infinity.    By examining Fig. 1 

or performing some algebra we find that 

| lim  Ec(|) = 1 (21) 

and that 

•g  lim   ET(g) = 1 (22) 

and that these limits are approached from below.    Thus even in the total absence of background 

radiation P(E) is not zero but 

P(E)<c e -ST 
(23) 

This behavior occurs not because of the error probability bounding but because of the basic quan- 

tum mechanical nature of optical detectors;  that is,  the right side of inequality (23) is identical 

to the probability that the optical detector will emit no photoelectrons in time T   even though it 

receives a signal strong enough to produce an average of ST photoelectrons in time T. 

Now let us consider the case in which the background exceeds the signal by at least a factor 

of three.    In this region 

and 

p   (§,       _S_ 
^ClB'       4B 

TlB'       8B 

|<0.3 

Thus Eqs. (5) and (19) become 

P(EU e-ST(S/4B> 

for the comparison receiver at low S/B and 

P(EUe-ST(S/8B> 

for the threshold detection receiver for low S/B.    As an example let us select S/B =0.1 and 

ST = 500;  with either receiver structure, this combination of parameters leads to reasonably 

small error probabilities despite a signal-to-background ratio of — lOdB.    This performance 



occurs because it is not necessary for the signal to overwhelm the background but only to pro- 

duce a change which is perceptible above the fluctuations inherent in the background.    For the 

set of numbers used in the simple example above,  an average of BT = 5000 background photo- 

electrons will be emitted during the signaling interval but the standard deviation in this number 

of background photoelectrons is only 71 and an additional 500 signal photoelectrons are usually 

observable. 

Some interesting results can be obtained if we multiply both the numerator and denominator 

of the argument S/B used in the E(   ) functions by T.    Thus Eqs. (5) and (19) become 

-STE   (ST/BT) 
P(E)^e L (24) 

for the binary-comparison receiver in PPM and 

- ST ET (ST/BT) 
P(E)^e (25) 

for the threshold receiver. But ST equals N„, the average number of photoelectrons due to sig- 

nal, and BT equals N_, the average number of photoelectrons due to noise. Rewriting Eqs. (24) 

and (2 5) we find that 

w„ „   -NSEC(VNB> P(E) ^ e 

for the binary-comparison receiver in PPM and 

-N„E   (N„/NR) 
P(E) < e     b    1     b     B 

for the threshold detection receiver. 

At this point,  much could be said about using sophisticated and expensive coding techniques, 
9 

like sequential decoding,   to achieve reliable communication despite large values of P(E);  how- 

ever,   such techniques are difficult to implement and are best used only as a last resort.    An 

often adequate and cheaper system design technique    is to design for a reasonably good error 

probability and then use a simple coding technique,   such as threshold decoding,      to protect 
-4        -10 

against occasional errors.    For such a "good" channel P(E) ~ io      « e        is a conservatively 

reasonable figure.    We can be sure that such performance is possible if the exponent on the right 

side of the P(E) inequalities is less than —10.    Thus one can expect good communication perform- 

ance whenever 

ft) 
£NSMNJ) 

for the binary PPM receiver and 

cN 
10<NSETINJ) (27> 

for the threshold detection receiver.    As pointed out above,E„(   ) and E_(   ) never exceed 1,  thus 

a minimum of 10 photoelectrons is essential for reliable communication even in the complete 

absence of background.    With some albeit small background,   intensity 1 5 to 40 dB below the sig- 

nal,  we may use Fig. 1 to estimate the minimum value of No necessary to satisfy inequalities 

(26) and (27).    In this range something like an average of 10 to 14 signal photoelectrons are 



necessary for reliable communication with the binary PPM comparison receiver and an average 

of 15 to 25 signal photoelectrons are necessary for reliable communication with the binary thresh- 

old detection receiver. 
We may also estimate possible communication rates  R possible with these two optical mod- 

ulation schemes by using the expressions for P(E) to determine the minimum r  consistent with 
reliable communication.    If little time is lost in switching the transmitter on and off, the PPM 

system transmits log., M bits in Mr seconds.    Thus the data rate 

log   M 
R = —~— bits/sec      . (28) 

If we require a probability of symbol error less than or equal to P ,,   a sufficient condition is that 

the upper bound be less than or equal to P..    Thus 

In P(E)^ In (M - 1) - STEC<^)^ In Pd 

1 SEc(l» 
- < — -t~- -7T        • (29) 
7   1 "fM-ll 

n hp—I d 

Substituting inequality (29) into Eq. (28) we find that 

log   (M)      SE  (|) 
R
<—M  riM^ri ,30) 

ln r*Tl 
for \I-ary PPM.    A very similar argument estimates 

SE    (|) 
R<        /1\ (31) 

for the threshold detection receiver used with binary on-off keying to transmit one bit every T 

seconds. 

Looking at inequalities (30) and (31) and the asymptotic behavior of both E   (S/B) and E.„(S/H) 
we note that for large S/B the possible data rate is essentially proportional to  S   in that the E(    ) 
functions are nearly constant for large S/B.    On the other hand,  for (S/B) < 0.3,  both E(   ) func- 
tions are proportional to S/B.    Thus 

R S2 
rv        B 

for small S/B. 
Finally,   we may use inequalities (30) and (31) to investigate the effects of a pulse transmit- 

ter which operates with an additional power gain G at duty cycle l/G.    For this pulsing trans- 
mitter,   inequality (30) becomes 

i  log2(M)SGEc(f) 
U<  G M ln /M- 1\ '^ 

d 



log2 (M)    SEc(^) 
R^ M .     /M-1N (33) 

In (M - 1\ 

*    Pd    > 

Similarly inequality (31) becomes 

SE„(^f) 
R< --\-rr   • (34) 

Thus the only change in  R for a pulsing transmitter is replacing S/B in the E(S/B) functions by 

SG/B.    Since the E(S/B) functions increase linearly with S/B for (S/B) < 0.3,   we see that the data 

rate increases by G for a pulse transmitter if (SG/B) < 0.3.    On the other hand,  the E(S/B) 

functions are more or less constant for (S/B) > 10; thus little gain results from a pulsing trans- 

mitter when (S/B) > 10. 
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APPENDIX A 

UPPER  BOUND ON   P(E)   FOR OPTICAL  PPM  COMPARISON   RECEIVER 

Wo wish to upper bound 

P(E) = PInj < nz/mx\ (A-l) 

for the case where n, and n? are Poisson random variables and the mean of n. is (B + S) T and 

the mean of n? is BT.    Consider a function u(n.,n„) defined as 

ujrij, n2) 
1       if n . < n, 1        2 

0      if n, < n. 2        1 

Then 

P(E) = u(ni,n2) (A-2) 

where the overbar denotes expectation over all values of n, and n.,.    This expectation is just the 

complicated expression discussed in the text.    However,we may upper bound P(E) by upper bound- 

ing u(n, , n,).     For any real number y   greater than or equal to one, 

n2-n1 
u(n1,n2)<v (A-3) 

n2"nl 
because y  to any power is never negative and y is always greater than or equal to one when- 

ever n, ^ n?.    Substituting (A-3) into (A-2) we find that 

n  -n 
P(E)^7   " . (A-4) 

°°                    n2                  °° 
v    [-y(BT)]     Q-BT    V 

Li              n   '                              Li 

2=°                                     nl=° 

nl 
, (S + B) T , 
1           y       J       C-(S+B)T 

n4: 

Using the Poisson density functions for n.  and n2,  we find that 

P(E)< 

or equivalently that 

P(E)^ exp{Br>- - BT +   (S + B) T - (S + B) T}       . (A-5) 

To make the bound as tight as possible,  we select the y  which minimizes the exponent in (A-5). 

This minimizing y   satisfies the condition 

BT -  (S+
2

B>T   = 0 
y 

or after dividing out common factors of T, 

V1 
B 

11 



Substituting this minimizing y  into (A-5) and rearranging terms in the exponent, we find that 

P(E)<exp   -ST   1 -2 | (Jl + J - l) 

or that 

P(E) < e 
-STE   (S/B) 

(A-6) 

(A-7) 

where 

|«-»f(V^I-*)] Ec't> = h-zf(,/i + §- 
Rearranging terms in the expression for E  (S/B),  we find that 

(A-8) 

Ec<l» itt -y 
s 
B 

(A-9) 

Expressions (A-7) to (A-9) are identical to Eqs. (5) and (6) in the text. 

12 



APPENDIX  B 

UPPER  BOUND ON   P(E)   FOR  OPTICAL  DETECTION 

This appendix derives Chernoff bound on PM and P„.    The basic technique used to derive 

these bounds is the same as that in Appendix A.    Thus,   we will tend to skip lightly over the under- 

lying arguments presented in Appendix A. 

By definition 

PM =  P[n<C T/A = S + B]       . 

Let   a  be a positive number greater than one.    The positive quantity a is greater than one 

whenever a miss occurs,  and the expectation of a given A = S + B is an upper bound to PM. 

Thus 

This expectation may be calculated easily from the Poisson distribution. 

T-n T    v       "nT-H   A      o  ,  o\ a = a        N     a     P(n/X = S + B) 

n=0 

T    v       -n  l(S + B) r]n     -(S+B)T = a        N     a       — r1—— e Li n. 
n = 0 

T       (S + B) T      -(S+B)T 
= a     e  : ;—-   e a 

Thus 

Tln« + (S+B)T[ —-1] 
PM<ce a . (B-l) 

We now select the  a  which gives the smallest upper bound on PM by minimizing the exponent 

on the right side of Eq. (6) over  a.    The minimizing a  is 

a -.   <A±B^ (B.2) 

Hence 

_ST[B|S][azln^l] 

PM«e a . (B-3) 

We may bound P„ in a similar way, 

PF=P[n>T/\ = B]      . 

For y > 1,  y is always positive and greater than or equal to one whenever n ^. T.    Thus 

1 5 



with the expectation taken with X = B.    Thus 

OO 

n    „    -T    v      n  (BT)n    -BT P
F < Y      L y   -$r- e 

n=0 

or equivalently, 

PF<e-TlnY+(BT)(y-l) (B.4) 

Obtaining the tightest upper bound by selecting the y  which minimizes the exponent,  we select y 

such that 

JL T S + B  _   S + B      J_ ,, 
7       BT   "   (S + B) T B      "       B      '    a      ' (        ' 

Substituting (B-5) into (B-4) and using (14) and (B-2) for simplification,   we find that 

_ST[B+S][QL^lnall] 

PFS< ^ e b a . (B-6) 

Thus (B-3) and (B-6) show that 

_ST(1 + |][oLzln_a-l] 

PM<e 

„  ,, , B , . a-ln Q--1 , 

P <ie-SrI1+ff"—s^i 
*F^ r 
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simple easily evaluated but tight upper bounds on error probability with both receiver decision 
rules.   Upper bounds on error probability are derived for both M-ary PPM communication with 
a maximum likelihood receiver and for a fixed threshold radar detection receiver. 

These receiver performance bounds illustrate several differences between optical or quan- 
tum communication and conventional communication.   These differences are discussed in detail. 
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